Fixed directional blur
This commit is contained in:
@@ -29,12 +29,14 @@ public static class Program {
|
||||
Console.WriteLine("Debug mode enabled.");
|
||||
}
|
||||
|
||||
|
||||
var imagesPath = "images";
|
||||
for (var i = 0; i < 8; i++) {
|
||||
var pixels = ImageUtil.LoadImage<Vector3>($"./{imagesPath}{Path.DirectorySeparatorChar}{i + 1:00}.png");
|
||||
Images.Add(new(pixels, pixels.GetLength(0), pixels.GetLength(1)));
|
||||
}
|
||||
/*
|
||||
|
||||
/*
|
||||
var pixels = ImageUtil.LoadImage<Vector3>($"./sphereempty.png");
|
||||
Images.Add(new(pixels, pixels.GetLength(0), pixels.GetLength(1)));
|
||||
pixels = ImageUtil.LoadImage<Vector3>($"./spherehalf.png");
|
||||
@@ -54,6 +56,18 @@ public static class Program {
|
||||
width = (uint)Images[0].Width;
|
||||
height = (uint)Images[0].Height;
|
||||
|
||||
for (int i = 1; i < Images.Count; i++) {
|
||||
for (int x = 0; x < Images[i].Width; x++) {
|
||||
for (int y = 0; y < Images[i].Height; y++) {
|
||||
Images[i].Pixels[x, y].X = MathF.Min(Images[i - 1].Pixels[x, y].X + Images[i].Pixels[x, y].X, MAX);
|
||||
Images[i].Pixels[x, y].Y = MathF.Min(Images[i - 1].Pixels[x, y].Y + Images[i].Pixels[x, y].X, MAX);
|
||||
Images[i].Pixels[x, y].Z = MathF.Min(Images[i - 1].Pixels[x, y].Z + Images[i].Pixels[x, y].X, MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if(debug)Images[i].Pixels.SaveImage($"Debug/Sum{i}.png");
|
||||
}
|
||||
|
||||
Console.WriteLine("Creating masks...");
|
||||
for (var i = 0; i < Images.Count; i++) { //for each image pair, create a mask
|
||||
var selfMask = SelfMask(Images[i].Pixels);
|
||||
@@ -114,17 +128,21 @@ public static class Program {
|
||||
currStep += stepIncrement;
|
||||
}
|
||||
|
||||
finalImage.SaveImage("Debug/Final.png");
|
||||
|
||||
// apply directional blur
|
||||
var iterations = 10;
|
||||
var radius = 3f;
|
||||
var iterations = 1;
|
||||
var radius = 100f;
|
||||
var step = .5f;
|
||||
var sigma = 1f;
|
||||
var totalMask = SelfMask(Images[^1].Pixels);
|
||||
totalMask.SaveImage("Debug/TotalMask.png");
|
||||
for (var i = 0; i < iterations; i++) {
|
||||
Console.WriteLine($"Applying directional blur {i + 1}/{iterations}...");
|
||||
finalImage = DirectionalBlur(finalImage, ImageMasks[0].Mask, radius, step, sigma);
|
||||
finalImage = DirectionalBlur(finalImage, totalMask, radius, step, sigma);
|
||||
}
|
||||
|
||||
finalImage.SaveImage("final.png");
|
||||
finalImage.SaveImage("finalBlur.png");
|
||||
Console.WriteLine("Done!");
|
||||
}
|
||||
|
||||
@@ -188,8 +206,7 @@ public static class Program {
|
||||
if (pixel.X > absMax) absMax = pixel.X;
|
||||
}
|
||||
|
||||
Parallel.For(0, width * height, parallelOptions, (i) =>
|
||||
{
|
||||
Parallel.For(0, width * height, parallelOptions, (i) => {
|
||||
//convert 1D index to 2D index
|
||||
var x = (int)(i % width);
|
||||
var y = (int)(i / width);
|
||||
@@ -198,7 +215,7 @@ public static class Program {
|
||||
sw.Stop();
|
||||
|
||||
Console.WriteLine(
|
||||
$"SDF Normalization Time: {sw.Elapsed.TotalSeconds:N4}s ({width*height / sw.Elapsed.TotalSeconds:N0} pixels/s)");
|
||||
$"SDF Normalization Time: {sw.Elapsed.TotalSeconds:N4}s ({width * height / sw.Elapsed.TotalSeconds:N0} pixels/s)");
|
||||
|
||||
return new(temp);
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ public partial class SdfKernels {
|
||||
var valueB = B[x, y];
|
||||
var lumaA = valueA.X;
|
||||
var lumaB = valueB.X;
|
||||
var r = lumaA > LUMA_THRESHOLD || lumaB > LUMA_THRESHOLD ? 1f : 0f;
|
||||
var r = lumaB - lumaA > LUMA_THRESHOLD ? 1f : 0f;
|
||||
mask[x, y] = new(r, 0f, 0f);
|
||||
}
|
||||
|
||||
@@ -84,6 +84,27 @@ public partial class SdfKernels {
|
||||
gradient[index] = new(a / (a + b));
|
||||
}
|
||||
|
||||
static Vector3 SampleBilinear(ArrayView2D<Vector3, Stride2D.DenseX> image, float x, float y) {
|
||||
int width = image.IntExtent.X;
|
||||
int height = image.IntExtent.Y;
|
||||
|
||||
var x0 = (int)x;
|
||||
var y0 = (int)y;
|
||||
var x1 = x0 + 1;
|
||||
var y1 = y0 + 1;
|
||||
|
||||
if (x0 < 0 || x1 >= width || y0 < 0 || y1 >= height) return Vector3.Zero;
|
||||
|
||||
var a = new Vector2(x - x0, y - y0);
|
||||
var b = new Vector2(1f - a.X, 1f - a.Y);
|
||||
|
||||
return Vector3.Lerp(
|
||||
Vector3.Lerp(image[x0, y0], image[x1, y0], a.X),
|
||||
Vector3.Lerp(image[x0, y1], image[x1, y1], a.X),
|
||||
a.Y
|
||||
);
|
||||
}
|
||||
|
||||
static void DirectionalBlurKernel(Index2D index,
|
||||
ArrayView2D<Vector3, Stride2D.DenseX> image,
|
||||
ArrayView2D<Vector3, Stride2D.DenseX> mask,
|
||||
@@ -102,13 +123,19 @@ public partial class SdfKernels {
|
||||
|
||||
var gradient = Vector2.Zero;
|
||||
|
||||
for (var dx = -1; dx <= 1; dx++) {
|
||||
for (var dy = -1; dy <= 1; dy++) {
|
||||
if (x + dx < 0 || x + dx >= width || y + dy < 0 || y + dy >= height) continue;
|
||||
gradient += new Vector2(dx, dy) * image[x + dx, y + dy].X;
|
||||
}
|
||||
// calculate the gradient
|
||||
for (int i = -1; i <= 1; i++) {
|
||||
if (x + i < 0 || x + i >= width || y + i < 0 || y + i >= height) continue;
|
||||
gradient.X += i * image[x + i, y].X;
|
||||
gradient.Y += i * image[x, y + i].X;
|
||||
}
|
||||
|
||||
/*
|
||||
output[x, y] = new Vector3(float.Abs((gradient.X * 0.5f) + 0.5f),
|
||||
float.Abs((gradient.Y * 0.5f) + 0.5f), 0.5f);
|
||||
return;
|
||||
*/
|
||||
|
||||
if (gradient == Vector2.Zero) {
|
||||
output[x, y] = value;
|
||||
return;
|
||||
@@ -119,19 +146,19 @@ public partial class SdfKernels {
|
||||
|
||||
// now we follow the direction line and sample the image for length;
|
||||
for (var l = -radius; l <= radius; l += step) {
|
||||
var xOffset = (int)(gradient.X * l);
|
||||
var yOffset = (int)(gradient.Y * l);
|
||||
var xOffset = (gradient.X * l);
|
||||
var yOffset = (gradient.Y * l);
|
||||
var xSample = x + xOffset;
|
||||
var ySample = y + yOffset;
|
||||
|
||||
if (xSample < 0 || xSample >= width || ySample < 0 || ySample >= height) continue;
|
||||
|
||||
var sampleValue = image[xSample, ySample];
|
||||
var weight = MathF.Exp(-l * l / (2f * sigma * sigma));
|
||||
var sampleValue = SampleBilinear(image, xSample, ySample);
|
||||
var weight = MathF.Exp(-(l * l) / (2f * sigma * sigma));
|
||||
output[x, y] += sampleValue * weight;
|
||||
sum += weight;
|
||||
}
|
||||
|
||||
output[x, y] /= sum;
|
||||
output[x, y] = output[x, y] / sum;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user